冷焊:冷焊的表象是焊点发黑,焊膏未完全熔化。失效后果:产生开路和虚焊,可能导致少部分产品报废或全部产品返工,严重度评定为50现有故障检测方法:人工目视和x射线检测仪检测。失效原因为:回流焊接参数设置不当,温度过低,传送速度过快,频度为3,检测难度为5,其风险指数为750现行控制措施:按照焊膏资料或可行经验设置回流焊温度曲线。焊桥:焊桥经常出现在引脚较密的丁C上或间距较小的片状元件间,这种缺陷在检验标准中属于重大缺陷。焊桥会严重影响产品的电气性能,所以必须要加以根除。失效后果:焊桥会造成短路等后果,严重的会使系统或主机丧失主要功能,导致产品全部报废,用户不满意程度很高,严重度评定为s。现有故障检测方法:人工目视和x射线检测仪检测。FMEDA需要以市场和用户为导向,以满足用户需求和提高市场占有率为目标。南宁FMEDA定量分析工具
几十年来,安全性和可靠性一直是自动控制系统设计的基本参数。人们清楚地认识到,安全可靠的系统具有许多效益。经济效益包括更少的生产损失、更高质量的产品、更低的维护成本和更低的其风险成本。其他效益包括法规遵从性、安排维护的能力以及许多其他效益,包括让人对产品质量感到放心满意。鉴于安全性和可靠性的重要性,如何实现它们?它们是如何衡量的?近几十年来,可靠性工程科学取得了相当大的进步。该科学提供了许多用于实现高可靠性和高安全性的基本概念。这些概念包括强度高的设计、容错设计、在线故障诊断和高共因强度。所有这些重要的概念将在本书后面的章节中发展。当这些概念被实际理解和使用时,可以产生巨大的效益。武汉FMEDA七步法实施方案FMEDA需要以客户和用户的需求为导向,以提高产品的质量和可靠性为目标。
可靠性工程建立在概率论和统计学的基础上。但是,成功的控制系统可靠性评估同样取决于控制和安全系统知识。这些知识包括了解这些系统中使用的组件,组合失效模式及其对系统的影响,以及系统环境中存在的系统失效模式和失效应力源。因此,逻辑、系统工程和一些数学相结合,以完善可靠性和安全性评估所需的工具集。真实因素(包括在线诊断能力、维修时间、软件故障、人为故障、共因失效、失效模式和时间相关失效率)必须在完整的分析中得到解决。
控制系统和安全保护系统也遵循了一条向更复杂方向发展的演变路径。早期的控制系统很简单。按钮和电磁阀、目测表、温度计和油尺是典型的控制工具。后来,单回路气动控制器占主导地位。这些机器中的大多数不仅天生可靠,而且许多机器都以可预测的方式失效了。使用气动系统,当空气管泄漏时,输出下降。当空气过滤器堵塞时,输出量变为零。当嘶嘶声发生变化时,一个好的技术人员只需通过聆听来确定问题所在就可以“运行诊断程序”。安全保护系统由继电器和传感开关构成。随着安全弹簧和特殊触点的加入,这些设备在触点打开时几乎总是会发生故障。同样,它们是简单的设备,具有固有的可靠性,具有可预测的(大多数)失效安全失效模式。FMEDA需要对元器件的失效模式、影响和诊断方法进行详细的分析和评估。
FMEDA 失效模式影响和诊断分析,FMEDA 在功能安全工作中起到很重要的作用,它对功能安全产品的失效其风险、是否可诊断进行定性分析,同时也为平均失效概率和安全完整性等级的计算提供了有效的数据支撑。FMEDA 在FMEA基础上增加了两部分信息:(1) 对所有要分析的部件给出定量的失效数据;(2)系统或子系统通过自动在线诊断发现失效的能力。FMEA 是在产品设计阶段或过程设计阶段,对构成产品的子系统、零件或者对构成过程的各个工序逐一进行分析,找出所有潜在的失效模式,并分析其可能的后果,从而预先采取必要的措施,以提高产品的质量和可靠性的一种系统化的活动。FMEDA可以帮助制造商识别潜在的失效模式和影响,采取相应的措施降低风险。武汉FMEDA七步法实施方案
FMEDA需要考虑元器件的失效模式和影响的后果和影响等因素。南宁FMEDA定量分析工具
剩下的问题是在计算SFF中怎样使用"无影响"和"不是一部分"失效率(或者不使用)。保守的方法是在计算时排除这两者,给产品提供一个较低的SFF估计。这种方法只考虑安全和危险失效对需要安全功能的直接影响。保守的供应商使用这种策略,使用的时间周期大概在2000年到2002年之间。非常清楚,不好的策略来计算"不是一部分"失效是"安全"的。这是因为一个产品设计者用一种近似特定的SFF门槛来设计,可能加入额外部件达到了那个门槛,但这些部件没有使安全功能得到提高。南宁FMEDA定量分析工具